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ABSTRACT: Exosomes are the phospholipid-membrane-bound
subpopulation of extracellular vesicles derived from the plasma
membrane. The main activity of exosomes is cellular communica-
tion. In cancer, exosomes play an important rolefrom two distinct
perspectives, one related to carcinogenesis and the other as
theragnostic and drug delivery tools. The outer phospholipid
membrane of Exosome improves drug targeting efficiency. . Some
of the vital features of exosomes such as biocompatibility, low
toxicity, and low immunogenicity make it a more exciting drug
delivery system. Exosome-based drug delivery is a new innovative
approach to cancer treatment. Exosome-associated biomarker
analysis heralded a new era of cancer diagnostics in a more specific
way. This Review focuses on exosome biogenesis, sources, isolation, interrelationship with cancer and exosome-related cancer
biomarkers, drug loading methods, exosome-based biomolecule delivery, advances and limitations of exosome-based drug delivery,
and exosome-based drug delivery in clinical settings studies. The exosome-based understanding of cancer will change the diagnostic
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and therapeutic approach in the future.
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1. INTRODUCTION

Exosomes are nanoscale extracellular vesicles secreted from
several cells."” This is the most fast-growing research field. The
most interesting thing about the exosome is that it is the
messenger of several pathological conditions. The fundamental
level is involved in cellular communication.” It transports
several biologically active cargoes, for example, DNA,* RNA,>®
proteins,®”*
of uptaking recipient cells. Cancer and exosomes have the most
thrilling association. The collective evidence shows that tumor-
derived exosomes (TEXs) regulate cell signaling and
reprogramming in the complex tumor microenvironment
(TME) to promote cancer development (uncontrolled cell
growth, angiogenesis, metastasis, organ-specific metastasis
immune evasion, and drug resistance).””'" TEXs carry the
molecular signature to help the early detection of cancer and
work as biomarkers of cancer. Multiple nanodrug delivery
technologies are being studied to improve medication potency,
minimize toxicity, increase efficacy, and prolong drug flux
duration. Early endosomes first develop when endocytic
vesicles on the plasma membrane protrude outward. After
changing into late endosomes, the early endosomes start to
build up intraluminal vesicles (ILVs) in their lumen. This
happens when the endocytic membrane enlarges inward.

etc. This cargo can transform the cellular behavior
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Endosomes ILVs are frequently referred to as MVBs due to
their outward appearance. One group of bioactive molecules
integrated into ILVs during MVB synthesis includes proteins,
mRNA, miRNA, IncRNA, and circRNA (Figure 112).
Exosome formation and biological cargo selection and
loading are regulated via (1) the ESCRT-dependent process
and (2) the ESCRT-independent pathway. ILVs are eventually
discharged as exosomes into the extracellular environment
when MVBs fuse with the plasma membrane. Several
mechanisms, including (a) antigen presentation, (b) cell
signaling, (c) cell membrane fusion, and (d) pinocytosis or
phagocytosis, might lead to the uptake of these exosomes by
target cells. In the drug delivery sector, natural or synthetic
polymers and liposomes are more explored members. Both
efficient drug delivery systems have several limitations, for
example, low stability, toxicity, and low biocompatibility.m In
this crisis, exosomes show a promising role in drug delivery in
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Figure 1. Overview of exosome biogenesis via (1) the ESCRT-dependent pathway and (2) the ESCRT-independent pathway involving exosome
biogenesis and cargo selection of molecules. Target cells uptake exosomes via different pathways such as (a) antigen presentation, (b) cell signaling,
(c) cell membrane fusion, and (d) pinocytosis or phagocytosis. Reproduced with permission from ref 12. Copyright 2020 Elsevier.
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Figure 2. Biogenesis of an exosome and its components. This image explains the ESCRT-dependent pathway and the ESCRT-independent
pathway of exosome biogenesis in a more detailed manner and explains exosome-related structure components. Created with BioRender.com.

in vivo and in vitro systems.'* Exosomes are overcoming all of exosomes is that they are cup-shaped or biconcave when
limitations of polymers and liposomes, which is the reason why artificially produced by drying but in solution appear spherical

they are becoming the brightest star in the drug delivery when observed under the transmission electron microscope.
research area.'”" In this review, we will cover exosome There are many reports from the previous literature that some
biogenesis, exosome sources, the exosome isolation process, of the intricate protein machinery contributes to the formation
the interrelation between exosomes and cancer, exosome drug of ILVs. This protein complex is termed the transport-required
loading methods, and the application of exosomes against endosomal sorting complex, or ESCRT." Four different
several cancers and finally highlight the clinical study related to ESCRT subunits (0, I, II, and III) play key roles related to
exosome-based drug delivery. MVB formation, protein sorting, and cargo transport.20
ESCRT-0 binds to ubiquitinated protein-specific endosomal

membrane domains with the help of its ubiquitin-bindin
2. BIOGENESIS OF EXOSOMES domain and thereby initiates the ESERT mechancilsm. After thi%
Exosomes are dynamic entities continuously generated from initiation, ESCRT-0 interacts with ESCRT-I and then with
the endosomal system within the cell and exposed to the ESCRT-II, and the whole complex then connects to ESCRT-
extracellular environment through the process of exocytosis. III, which ultimately helps promote vesicle budding. Then, the
The membrane of the multivesicular body (MVB) invaginates splitting of the buds occurs. A specific sorting protein, Vps4, is
to form the late endosomal system, further elongating the late present to provide the energy that separates the ESCRT-III
endosomes in the fold to form intraluminal vesicles (ILVs).'® complex from the MVB membranes. TSG101 and CHMP4 are
During the formation of the ILVs, some specific proteins are also linked to the generation of exosomes. Budding and
incorporated into the vesicles, and these vesicles fuse with the secretion to the extracellular membrane are regulated by
perimeter or plasma membrane of the cell; these vesicles are EXCRT protein complexes.21 However, there are also pieces of
termed exosomes.'” An interesting point about the structures literature demonstrating ESCRT-independent pathways for
578 https://doi.org/10.1021/acsbiomaterials.2c01329
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Figure 3. Structure and composition of exosomes. Multiple exosome-associated components (protein, DNA, RNA, and surface marker) play vital

roles in cancer biomarkers. Created with BioRender.com.

cargo sorting. In 2013, Airola et al.** revealed that raft-based
microdomains in the plasma membrane help in the lateral
segregation of cargoes in the endosomal membrane. Interest-
ingly, these rafts are highly enriched with sphingomyelinases,
which are essential enzymes for the formation of ceramide
through the hydrolysis of phosphocholine. In these ceramide-
dependent pathways, the lateral phase separation is induced by
ceramide and also promotes the spontaneous formation of
cone curvatures in the plasma membrane, aiding the budding
process.”” The biogenesis of the exosome pathway is explained
in Figure 2.

Regardless of the regulation of biogenesis, sorting, and
budding, one chromaticism of the exosome is that it is
comparatively smaller and more uniform in shape. This makes
exosomes able to escape mononuclear phagocytes, reducing
their2 firculation time and increasing cell-to-cell communica-
tion.

3. FUNDAMENTALS OF THE EXOSOMES

3.1. Structure and Composition of Exosomes.
Exosomes construct a phospholipid outer envelope, and the
inner core carries a group of biologically active molecules.”
Components of exosomes are proteins, lipids, nucleic acids,
and glycoconjugates (Figure 3).

579

Exosome surface proteins play a principal role in cellular
communication (such as integrins and tetraspanins). Tetra-
spanins mainly regulate cell communication facilitated by
exosomes, and CD9, CD63, and CD81 are mainly observed.
Not only tetraspanins but also many adhesin proteins help
exosomes fix with the recipient cells.”> There are also reports
showing the involvement of integrins in exosome-mediated
metastasis. In 2015, Hoshino et al.”® showed the horizontal
transmission of @64 and a6p1 to the lungs and the horizontal
transmission of avfS to the liver, which ultimately promoted
metastasis to the respective organs. The main source of lipids
in exosomes is the plasma membrane of the parent cell from
which the exosomes originate, but apart from the plasma
membrane exosomes can also be produced from Golgi
membranes.”” Exosome membranes contain multiple lipid
molecules, including ceramide, cholesterol, phosphatidylcho-
line, phosphatidylserine, phosphatidylinositol, sphingomyelin,
phosphatidylglycerol, and many more.”® They also carry
dynamic nucleic acids (mRNA, circRNA, tRNA, piRNA,
tRNA, sncRNA, rRNA, IncRNA, mtDNA, and dsDNA).>* %3

3.2. Exosome Sources. Exosomes are isolated from
various biological fluids (blood, urine, saliva, etc.).”**> The
other sources of exosomes are from the tumor microenviron-
ment, since a large number of exosomes are produced in
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tumors compared to normal cells. Apart from that, exosomes 8 - v -
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mesenchymal stem cells and macrophages.***” b0 g 5 £ > £ 3
3.3. Exosome Isolation. The isolation of exosomes is the é E = gg “g % g =: ©
most challenging process in EV research. There are several ‘g g _% 3 = g2 @ £ £
isolation methods, such as ultracentrifugation,38 density bt § s § 2 % %”«g & _%O
gradient centrifugation,39 ultrafiltration,*® size exclusion £ ;5; < s - gm*; i: g
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precipitation.”” Each method has advantages and disadvan- E —%E £ g S 5 E_‘E
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include microfluidics,"*® lipid nanoprobes,44’45 and thermo- < E'é s g % % g 250 i 2 E
acoustofluidic separation.””"” Exosome isolation is related to ca2g@d g v EBE£ G ° %
several methods, and their advantages and disadvantages are B2 2 :Té 2 8 3 gg é;% g
summarized in Table 1. In the experimental aspect, the Eﬂ ?‘;’g 2 g E E 2 03 g £%  E 5
appearance of an isolated exosome and exosome-specific _85; 22 g § & BE f*_? o |
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7 P & EZEREr o B £R5E £ 2
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4. EXOSOMES FOR CANCER THERAGNOSTIC 53¢ 0 E2i: T3
4.1. Exosomes and Cancer. The association between 5EUETER 2 £ 875 % &
exosomes and cancer is the most highlighted area of current 29 = gy v o
research. The unexplained nature of exosomes has raised o 2 £% < E % kI -
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angiogenesis and metastasis, including epithelial to mesen- & 5oL _“fi 5 5 3 -
chymal transition (EMT) and immunological modulation.*’ £ ZE; ;g §8 2% & g b= §
TEXs (tumor-derived exosomes) play an important role in the g < %ﬁ E 2 E T A = é
origin, development, and treatment resistance of cancer.’ %1% E fj E-E, i gg = EO % %
The discovery of exosomes, which serve as regulatory agents in = ‘g:-\g % é. ‘*? é <25 8 .
cancer intercellular communication, increases the potential to g g g =7 E"* § To % é ig = E" %
investigate the understanding of tumor immunity. Several £ ;f Epg -85 = SE E . 2 B
scientific studies suggest that tumor-associated macrophages £ B é ER g 23 _%o 2 %é ¢ ¢ 8
(TAMs) are involved in major inflammation, suggesting that ° g : S ?TTEL 2: 2 g 2% % _% o E
TAMs play a significant role in tumorigenesis.”’ According to f; ?.; {?;?; ol E i —g_g‘ g 2 Sy %‘ é
various studies, TAMs promoted multiple cells in macrophage Se F2 28 % 5 F S ;;; s 2
polarization.”> TAMs lose their anticancer activity and =2 ;g é:-ag 23 z: é‘g S g =
promote tumor progression. Exosomes released from the Te gé T2 5 §1§ %j 5 ?Tg o ?%
tumor reprogram the macrophages and support cancer E ; :;% 24 E: 28 ;.;% £ %.z g Qé)
development.”® Hypoxia is another important feature of the s ESE Fia g%%‘ EZ gg 2E EE g
TME (tumor microenvironment) related to immunosuppres- Eog é asEs g& 2 gv 22 8% 8 2&
sion. Hypoxic conditions influenced the tumor-cell-derived - R -
exosome to drive cancer to a more aggressive pattern.54 The " " 4 8 " E_ﬁ . i
epithelial to mesenchymal transition (EMT) can be regulated é % g £ '*; g g o g E
by several transcription factors.”* Hypoxic tumor cells, derived ko b g é g2 £F o § T g
from multiple molecules of exosomes, reprogram the immune i T2 E 2 z :2 § _;D g i é
system and promote cancer development. This exosome . g% g% E < ER ﬁ;g 5 % 2
miRNA cargo affects macrophage function and M2 polar- 34 2 7a 322 f;: (‘5_‘.% fi 'F; g g 3
ization.> Exosomes are associated with multiple miRNAs 2 £ g‘é g% K < §5 ;2 BE5. "é £
associated with tumor progression.”>”” The exosome circular g £ ::’.g E,g EQ .; ;::: ; g%b E é% "é - :g
RNAs play a crucial role in the cellular communication that a 25 ¥ ® = ¢ %2 273 E2s &
occurs in the tumor microenvironment. In addition to RNA, S g £ gg < 3 2855 § i £ %g 2o
proteins also play a crucial role in tumor progression. Matrix = g5 2% g £ gg 3 g 832 g7 gg
metalloproteinases (MMPs) are related to cells with cellular 4 £ £E % 8 3 & SZZ2g 55 0E
adhesion properties, and TEXs alter MMP functions, causing g s s A s 28 & g =
cells to become motile. It was discovered that M2 macrophage- 2 3 . 8 . -
derived exosome CD11b/CD18, an integrin, promotes cancer g F E: EE 5 = & & 8 <S¢
cell proliferation while inhibiting metastasis by activating F-ﬂ § :_é° %; g 8 § %: EE g 3 g g2 2%
MMP-9. Due to its antiatherogenic effects, apolipoprotein E o El £ ?EE £ - 85 & o Eg § ie
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Figure 4. Neutrophil-derived exosome (N-Ex) isolation, characterization, and cell uptake. (A) Human peripheral blood neutrophil (PBN) isolation
method. (B) Transamination electron microscopy analysis of N-Ex with 100 nm regulation. (C and D) Morphological analysis of N-Ex via Atom
force microscopy (AFM). (E and F) Nanoparticle tracking assay (NTA) of N-Ex for size determination. (F and G) Explanation of the surface
charge via {-potential analysis. (H) N-Ex surface marker analysis by Western blot with calnexin as the control. (I and J) Experimental analysis of
DiR-labeled N-Ex untacking in the gastric cancer cell (HGC27) via (I) imaging flow cytometry and )J) fluorescence confocal laser microscopy. Cell
nuclease staining was done by 4’,6-diamidino-2-phenylindole (DAPI) and bright field (BF) with 20 ym regulation. Reproduced with permission

from ref 48. Copyright 2022 AAAS.

Table 2. Exosome-Associated Cancer Biomarkers and Their Clinical Significance

exosome
biomarker cancer source component clinical significance reference
diagnostic  breast plasma miR-223-3p early diagnostic breast metastasis biomarker 64
cancer
lung cancer serum miR-106b it is highly expressed in serum and it is also associated with lymph node metastasis and 65
mmp protein expiration in lung cancer metastasis
colon plasma CD147 it highly expresses in colon cancer patients 66
cancer
prostate urine miRNA-501-3p it is downregulated in prostate cancers but suppresses E-cadherin expression and promotes 67
cancers exosome metastasis
liver serum circRNA- it enhances liver cancer metastasis 68
cancers 100338
prognostic  breast plasma miR-222 it is interlinked in breast cancer (highly expressed) with lymphatic metastasis 69
cancer
lung cancer plasma miR-451a, it participates in lymph node metastasis in lung cancer 70
colon serum miRNA-203 it highly expressed colon cancer and is associated with metastasis, in vivo model (liver 71
cancer metastasis)
prostate plasma miR-1290 and it highly expressed prostate cancer and is related to castration-resistant poor overall survival 72
cancers miR-37§
liver serum miR-1262 it is an efficient prognostic biomarker of liver cancer 73
cancers

growth factor), and cytokines that participate in tumor
development. Exosomes, which carry multiple cargoes to
accelerate angiogenesis, were recently discovered to play a
critical role in cancer invasiveness.”® In cancers, TEXs are also
responsible for theepithelial to mesenchymal transition
(EMT).”® The surface integrin of exosomes leads to organ-
specific metastasis. TEXs-guided cancer cell migration in a
specific organ is regulated via the diversity of TEX

581

integration.”® The transcriptional regulator GATA3 was
abundantly released from TAM-derived exosomes, where it
plays an important role in epigenetic modulation to induce
angiogenesis and EMT.>

4.2. Exosome is the Source of Cancer Biomarkers. The
molecular contents of exosomes normally reflect those of their
parent cells and can therefore be used as biomarkers for
pathophysiological complications (such as cancer).””*>">*

https://doi.org/10.1021/acsbiomaterials.2c01329
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fusion method, freeze—thaw cycles, and use with membrane permeabilizers) and passive (incubation). Created with BioRender.com.

Tumor and stromal cells in the TME have been reported to
release exosomes, and their molecular signatures play a
dynamic role in cancer.’”®" For example, it has been found
that TNBC (triple-negative breast cancer) cells with CCLS on
their surfaces, derived from tumor-derived exosomes, alter
TME-associated macrophages and develop a metastatic nature,
resulting in a TME favorable for carcinogenesis.”” Researchers
suggest that derived cancer stem cells are involved cancer
metastesis.”” TEXs are being studied as diagnostic and
prognostic biomarkers in clinical trials. A clinical study
NCTO04523389 related to colon cancer focuses on the
development of diagnostic markers. TNBC TEVs carry
multiple molecules that are sources of diagnostic and
prognostic biomarkers.”” Some of the most comglicated
cancers, such as breast cancer,“’69 lung cancer,657 colon
cancer,”®”! prostate cancers,””””” and liver cancers,"®”® and
their related exosome biomarkers with clinical importance are
discussed in Table 2.

4.3. Exosomes as Carriers. Exosomes are nanosized
extracellular vesicles released by multiple cells. Exosomes with
a wide size distribution are easier to internalize, as cells prefer
smaller exosomes.”* Because of their economy of scale and
immense potential in drug therapy, they have been an
important research area in biomedicine and biomaterials.®®
Exosomes are released into the surrounding body fluids. They
have been shown to contain the molecular signatures of the
parent cells (such as proteins, DNA, RNA, and lipids). This
signature molecule acts as a messenger of cell status. Exosomes
are the most interesting noninvasive diagnostic biomarkers and
therapeutics. Their cargo molecules are involved in cellular
communication.”*®” The secretion of exosomes from specific
cells or tissues is based entirely on the cellular and philological

Z
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condensation of cells.”” The exosome leads to biologically
active molecules.”” The exosomal molecular signature has a
complex association with multiple treatment resistance and
carcinogenesis.60 miRNAs associated with TEXs promote
EMT (miRNA-21, miRNA-92b, miRNA-130a, miR-149,
miRNA-181¢c, miRNA-200, miRNA-328, miRNA-423-5p,
miRNA-602, and miRNA-1246), tumorigenesis, invasion, and
metastasis (let-7a miRNA, miRNA-21, miRNA-221/222, and
miRNA-42.%

4.4. Routes of Administration. Understanding and
comprehensively analyzing the underlying complexity of
cellular communication is a potential tool for the development
of efficient drug delivery systems and therapies in the fight
against cancer. In the past decade, significant research in the
field of exosomes has gained momentum. The whole situation
regarding their cellular interactions with disease progression
has yet to be fully explored.”” Recent scientific expeditions
have documented effective exosome-mediated therapeutic
delivery to cancer models and provided insights to improve
disease pathophysiology.”” Efficient drug loading and sustained
drug release via exosomes in and around the tumori7genic tissue
depends on a complex, multifaceted set of factors.”" Based on
clinical data and other medical research, there are specific drug
delivery routes that exosomes should follow in order to reach
the tumor target site.”"”** Nowadays, several conventional and
unconventional routes of administration for these vesicles have
been tried by several clinical research groups, namely,
parenteral, oral, intertumoral, intranasal, and intraperitoneal
routes.””~"* Needless to say, the appropriate choice of the
route of administration of the drug in relation to the type of
cancer it is dealing with is absolutely essential to the success of
exosome delivery. Considering all the challenges and
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adversities, these exosome-based drug delivery targets pave a
new way toward successful drug delivery and sustained drug
release strategies in various tumors.”* Appropriate clinical trials
and research need to be standardized to target potential
exosomal agents to combat the growing rates of cancer.”>”®

4.5. Exosome Loading Method. Exosomes are natural
carriers into which drugs can be loaded. Exosomes are
encapsulated with drugs to make them suitable for the various
target therapies. There are three different methods by which
drug encapsulation occurs: the postloading method, the
preloading method, and the fusion method.”” Therefore,
since the incorporation of the drug into this lipid bilayer
membrane is challenging,78 two different methods are
followed; active loading and passive methods’’ (Figure S).

In active or remote or postdrug loading, the cells are cleaned
to obtain a naive exosome that is then sealed with drugs, while
in passive loading or preloading methods the cells and the
drugs are incubated together and the component later
undergoes purification to yield a drug-sealed exosome. The
postloading method works better with hydr%ghobic drug

components than hydrophilic drug components.

5. ACTIVE DRUG LOADING APPROACHES

Rupture of the exosome membrane is used to allow the entry
of functional components into the exosome during drug
loading. After the required molecules are loaded into the
exosomes, the exosome retains its previous shape. Electro-
poration sonication, extrusion, and freeze—thaw cycling are
some of the methods used to disrupt exosome membranes.””
Studies suggest that the active drug loading method increases
the drug encapsulation efficiency of exosome development 11-
fold.®" The limitation of this method is that it can affect
exosome targeting properties and the native structure during
the membrane rupture process.”’

5.1. Electroporation. Electroporation involves a high-
intensity electric field, instantaneous changes in cell membrane
permeability, and drug loading. The voltage settings for
different types of donor cells, such as B. Hela cells, monocytes,
and immature dendritic cells, generally range from 150 to 700
V.”” Drug molecules enter through holes created in the
exosome membrane during electroporation, while the mem-
brane is restored after loading. This approach is commonly
used to load large molecules such as miRNAs and siRNAs®'
into exosomes. The electroporation process has a poor loading
capacity due to the aggregation of RNA and stability issues.
This approach can improve the loading of hydrophilic small
molecules in exosomes and increase the efficiency of RNAs in
exosomes.”'

5.2. Sonication. The premise of ultrasonic drug loading is
that ultrasonic waves lower the microviscosity of the
membrane (usually by at least twofold), allowing the
hydrophobic drug to pass.”” Exosomes derived from parental
cells or recipient cells are mixed with a specific drug and
protein legend before being sonicated with a homogenizer
probe. The integrity of the exosome membrane is disrupted by
the mechanical shear stress generated during sonication,
allowing bioactive chemicals to enter the exosome while the
membrane is deformed.*” Research suggests that sonication
alters the viscosity of exosomes,” but there are no reports of a
reduction in the membrane-bound protein or lipid content of
the exosome.®” After a 1 h incubation at 37 °C, it was shown
that the membrane integrity of the exosome was restored.
Drugs that bind to the surfaces of exosomes release very
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quickly, and drugs encapsulated via the exosome take time to
release phage.®”

5.3. Fusion Method. Membrane fusion, itself a scientific
achievement, can fuse exosomes and nanocomposites within a
membrane structure. It allows for the prolonged release of
nanodrugs, enhances absorption and efficacy, and performs an
exocrine function in immune system response, antigen
presentation, cell migration, cell differentiation, and tumor
invasion.”” This adaptable technique was successful in
enriching exosomes using hydrophilic biological components
without removing their function. When a drug and a liposome-
encapsulated drug were compared, hybrid EVs increased the
cellular transport efficiency of a chemotherapeutic agent by
three- to fourfold. Fluorescence resonance energy transfer,
which detects changes in nanoscale spacing of biolo%ical
macromolecules in vivo, was used to confirm the hybrids.”

5.4. Freeze—thaw Cycles. Exosomes are incubated with
selected drugs at room temperature for a set period before
being quickly frozen at —80 °C or in liquid nitrogen.
Thereafter, the combination is allowed to thaw at room
temperature. Freeze—thaw cycles are performed at least three
times to improve drug encapsulation. Compared to sonication
or extrusion, this method has a reduced drug loading capacity.
Furthermore, this approach can increase exosome a% regation,
resulting in large-scale drug loading of exosomes.*">*’

5.5. Used with Membrane Permeabilizers. Membrane
permeabilizers and surfactants such as saponin can interact
with cholesterol in the cell membrane to create pores that
allow the passage of exosomes. The membrane permeability
approach can improve the loading efficiency of catalase into
exosomes compared to the incubation method.*’

6. PASSIVE LOADING APPROACH

The method involves the integration of drugs with exosomes.
The mechanism of encapsulation and its loading efficiency
depend on the hydrophobic interaction and diffusion between
the loaded molecule and the lipid layer of the exosomes.®”””

6.1. Incubation. The passive loading approach involves
two different types of incubation: incubation of drug along
with an exosome or with donor cells. In the case of incubating
a drug with exosomes, this technique allows the drug to enter
the exosome based on the concentration gradient during the
incubation. Since hydrophobic drugs can interact with the lipid
surfaces of exosomes, this property is exploited for drug
loading.®” In one study, exosomes were incubated with the
paclitaxel stock solution for 1 h at 22 °C to produce an
excipient preparation with a loading efficiency of 9.2%. Based
on the high lipophilicity and limited water solubility of
paclitaxel, this technique uses the passive diffusion of drugs
packaged in exosomes. In addition, it has been suggested that
coincubation at 37 °C can be used to load miRNAs into
exosomes.”” The disadvantages of this method is that it is
limited to a specific type of drug and the amount released after
incubation is not sufficient for clinical trials.*® In the case of
incubation with donor cells, the drug is coincubated with the
donor cells, which is done by pretreating the cell membrane,
and then exosomes loaded with the drug are shed using UV
light, heat, or both. In both cases, the cell membrane is
unobstructed, but the downside that researchers face during
incubation is the insufficient number of exosomes that are
secreted.”’ The efficiency during loading and the cytotoxicity
that cells experience while responding to the drug also pose
research challenges.®
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6.2. Drug Delivery via Exosomes. The latest discoveries
point to a unique property of exosomes, as it was found that
exosomes can transport proteins and genetic and epigenetic
information from one cell to another cell through receptor—
ligand interactions.””* One of the results suggests that
exosomes obtained from mouse mastocytes can be transferred
to humans and the RNA obtained from this transfer can be
used in other humans and mice.” Discoveries stated that
exosomes self-decode upon transfer into recipient cells
according to the host body, hence protein translation in the
host body occurs depending on the host physiology.” The
uniqueness of the exosome makes it the most important
medium for transporting drugs to the cells.*® Unlike other
carriers used in cells, such as liposomes and polymeric
nanoparticles, exosomes have the unique potential of being
an endogenous cellular machinery that can be used for drug
delivery and storage.”’ Exosome delivery enables simultaneous
intercellular communication by sending many signals simulta-
neously. Exosomes are unlikely to be freely circulating soluble
factors and can release large amounts of functional molecules,
as they are soluble factors in the host cells.”’ Exosomes have
other additional properties such as the protection of the
protein or drug entrapped within due to their small size, which
helps exosomes avoid phagocytosis."> Exosome cargoes can
travel long distances, have high biocompatibility, are non-
immunogenic and targeted, and can overcome a variety of
physical barriers due to their properties.'>”*

6.3. Delivering Small Molecules via Exosomes. Drugs
can be encapsulated in exosomes, thereby prolonging the drug
half-life and improving the stability of drug release.
Furthermore, due to their endogenous origin, exosomes are
highly biocompatible and can be used as nanocarriers for
tissue-specific targeted delivery.*® Studies show that exosomes
were designed with hydrophobic agents such as curcumin, and
the results showed that exosomes could carry the hydrophobic
agent and also enhanced its anti-inflammatory properties.”
Various studies conducted have found that exosomes can cross
the blood—brain barrier. This scientific evidence suggests that
exosomes overcome nanoparticles based on multiple mem-
brane cross-constraint. This attribute of the exosome makes it a
more efficient drug delivery tool.”* From this we can conclude
that exosomes can not only transport the drugs but also
increase their half-life, reduce toxicity, and even overcome
various barriers.

6.3.1. Delivering Proteins via Exosomes. Exosomes are also
used to carry large molecules, such as proteins, in addition to
tiny compounds. To understand the role and importance of
exosomes in protein delivery, we can consider a case related to
Parkinson’s disease (PD)."* Exosomes produced by the central
nervous system (CNS) have been found in cerebrospinal fluid
and peripheral body fluids, and several studies suggest that
their molecular signatures play a role as biomarkers in
Parkinson’s disease (PD). Exosomes have been shown to
spread toxic a-synuclein protein (syn) between cells and cause
apoptosis, suggesting a critical mechanism that causes the
disease. This accelerates syn-aggregate proliferation in brain
pathogenesis in Parkinson’s disease. However, exosomes have
also been reported to play a significant role in the treatment of
PD. In the mouse model of PD, researchers have found that
exosomes transport catalase and small interfering RNAs to the
brain.”® Designing exosomes with catalase can be said to be a
promising therapy for PD therapy because the delivery of
catalase across the BBB, like many other drugs, is challenging
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and exosomes have overcome this hurdle. The targeted
delivery of armed exosomes is also used as an anticancer
treatment, with the exosomes loaded with various active
pharmaceutical ingredients (API), including genetic material,
proteins, and chemotherapeutic agents.96 The exosomes have a
more efficient ability to load anticancer drugs onto their
surfaces compared to synthetic nanoparticles.

6.3.2. Delivering Genetic Material via Exosomes. Various
studies conducted have found that exosomes can carry both
large and small molecules. These cargoes can be engineered to
even carry genetic and epigenetic material.*” Gene therapy is
being considered for the treatment of various types of cancer.
Exosome-based gene therapy transports siRNA, mRNA, and
miRNA along with exosomes.”” Exosomes are the most
efficient miRNAs transporter tools and are used for therapeutic
RNA delivery.”® Several studies show that exosomes transport
RNA more efficiently than any other nanoparticle. Exosome-
based small RNA delivery enhances its functional efficiency.
Studies have shown that exosomal miRNAs molecules have a
complex interrelationship in multiple cancer delivery phages
(angiogenesis and metastasis).97

7. APPLICATION OF EXOSOME-BASED DRUG
DELIVERY IN MULTIPLE CANCERS

Exosomes are nanosized extracellular vesicles. They secretes
from almost all cells. The main contribution of exomes is in
cellular communication.””'” They have been found in body
fluids such as blood, urine, cerebrospinal fluid, saliva, etc. This
evidence proved that they are involved in several physiological
metabolic processes.'”” However, exosomes have also been
shown to be involved in cancer development, progression, and
metastasis. Tumor-derived exosomes (TDXs) have been
reported to promote cancer proliferation and cause the
formation of the premetastatic niche. They have also been
found to regulate drug resistance.'”'%° TDXs turn the recipient
cells into cancer cells. Evidence has shown their involvement in
the modulation of immune response, stromal cell reprogram-
ming, extracellular matrix remodelling, the induction of drug
resistance, etc.'”! Exosome-associated molecular signatures are
promising evidence for the invention of cancer biomarkers.*®
The exosome-based therapeutic agg)roach is the most
innovative area in cancer research.'”'”’ This Review aims to
summarize the clinical therapeutic exosomes that behave as
nanocarriers that deliver nucleic acids, mRNAs, microRNAs,
proteins, lipids, and metabolites to other cellular habitats and
behave as convenient drug delivery systems.”> The exosomes
are isolated from the patients and conjugated with drugs, and
this approach develops biocompatibility and low toxicity in
drug delivery.'*” This system also bypasses the P-glycoprotein
drug efflux system, thus reducing the risk of drug resistance.*”
It has been reported by a research group that the exosome
penetrates deep into the tissue, effectively diffuses in the blood,
and even crosses the biological barrier."”” Exosomes can also
be effectively engineered for cell and tissue specificity, allowing
the increase of the drug concentration at a given diseased
site."”* The potential applications of exosome-based cancer
therapy are presented in Table 3. Homeostasis in a normal cell
is maintained by the transfer of bioactive molecules across
membranes. This diffusion and uptake of biological materials
occurs through extracellular vesicles, which characterize the
cargo and send it to its assigned destination. Exosomes are
extracellular vesicles that moderate this intercellular commu-
nication. Previous studies have shown that exosome cargoes
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Table 3. continued

reference

types of

modification

method of synthesis

function

target cell

targeting ligand

therapeutic cargo

126

chemically
modified
chemically

CD47 surface decoration

increased exosome circulation time

(MEFs)
diagnosis of cancer (passive

embryonic fibroblasts

mRNA

SIRPa

127

modified

surface PEGylation
penetration

reduced exosome clearance enhanced tumor

)

action

copper-64 (64Cu)-radiolabeled N/A
polyethylene glycol (PEG)
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can hijack the cells in several pathological conditions such as
cancer."”'% Therefore, they have emerged as the essential
regulatory molecules that modulate cell-to-cell communication
during phage. The exosome has been shown to have an
important interaction between tumor chemotherapeutic
resistance and cancer metastasis.'”> In the recent past,
therefore, exosomes have been considered as important
diagnostic biomarker sources and therapeutic tools against
cancer. Although exosomes have shown promising results in
vitro and in vivo, their use in humans as cancer therapeutics is
still under investigation. Exosomes require more detailed study
and understanding to become potential drug delivery systems
and anticancer therapies in the near future.

8. CLINICAL APPLICATIONS OF EXOSOMES IN THE
TREATMENT OF CANCER

8.1. Advancements and Limitations. Exosomes have
great potential as new drug delivery vehicles due to their
inherent involvement in intercellular exchange of biomolecules,
particularly for biotherapeutics that can be loaded into
exosomes using the cellular EV packaging machinery.” As
we discussed earlier, delivering a drug to target sites and
crossing the barriers was possible through exosomes compared
to other nanoparticles. The research data reported that the
drug potency and half-life of exosomes were well maintained
when they were introduced into the recipient cell. Since the
exosome is a natural mediator, it has the natural ability of cell
permeability, which helps it cross physical barriers and even
escape lysosomal degradation and the endosomal pathway."
Macrophage-derived genetically engineered exosomes are
capable of drug delivery without rejection.'*”

There are several underlying questions that remain
unanswered that limit the use of this novel component.'”
(1) Industrial-scale production of exosomes would help treat
cancer. (2) The storage of these exosomes derived from
different cells and their longevity when not in use. (3)
Targeting the armed exosomes to perform biogenesis at the
site and not with other exosomes already present in the
recipient cells. (4) The pathways and mechanisms that control
exosomes will eventually help researchers fully control drug-
containing exosomes. (5) One way to prevent therapeutic
exosomes from reacting with healthy cells is to evaluate the
characteristics of pharmacokinetics and pharmacodynamics, as
well as safety, feasibility, toxicity, and pharmacodynamics. (6)
Although exosomes are the natural mediator of cells, the
immune response of a loaded exosome in the body has yet to
be discovered."” (7) We lack a technique that can help us to
isolate exosomes with high purity and in reasonable quantities,
which could help us to reduce costs, since exosome isolation is
very expensive.” (8) Hybrid exosomes are being used based
on future demand, but the chemical efficacy and safety of such
exosomes have yet to be investigated.B (9) Exosomes are
composed of heterogeneous components and have been
reported to play an important role in tumor growth and
even metastasis. Therefore, the immunogenic response of the
hybrid exosomes or exosomes derived from other animals must
be thoroughly investigated before they are used for clinical
trials."? (10) Although experiments show promising results in
removing components from macrophage-derived exosomes by
hypotonic treatment,'*® the effect of the same treatment on
exosomes bearing caspase-3 or other carcinogenic components
remains to be investigated.39 (11) Most anticancer exosome
drugs are still in the early stages of development.'*
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8.2. Exosome-Based Drug Delivery-Associated Clin-
ical Trial for Cancer. Exosome-based clinical trials related to
drug delivery are the most highlighted research area today.
Sometimes they use a combination of traditional cancer
therapy to develop effectiveness. Multiple cancer types and
associated clinical trials of exosome-based drug delivery are
constructively summarized in Table 4.

9. FUTURE PERSPECTIVES

Despite promising experimental achievements, there are some
challenges in exosome-based drug delivery in terms of
heterogeneity in origin, structure, and function. Among all
these limitations, the greatest concern is the nonspecificity of
exosome biodistribution. They can be found in various bodily
fluids in the human body.146 However, in a study on BALB/c
nude mice, it was observed that in the case of pancreatic cancer
exosomes secreted by Panc-1 cells accumulate at the site of the
tumor in a time-dependent manner. The rate of exosome
accumulation is 30X higher than that of PEG—PE micelles at 4
h postinjection.*” Another major problem of exosomes is their
ability to be rapidly cleared from the bloodstream after in vivo
administration.'*® This property is mysterious, since the
exosome itself is made up of unique protein—lipid assemblies.
However, the mystery was solved in a study that found the
rapid clearance of exosomes from the bloodstream is due to
uptake by macrophages. Experimental results clearly showed
that exosomes derived from B16—B16 cells are quickly cleared
after intravenous injection because liver and spleen macro-
phages have captured them."*” This problem can be solved to
some extent by incorporating polyethylene glycol (PEG) into
the structures of exosomes. It has been experimentally
confirmed that exosomes with PEG can be detected even
after 60 min postinjection, while exosomes without PEG can
only be detected for 10 min."*” The implication of exosomes as
drug carriers for unconventional therapeutics,”' including
ocular, pulmonary,152 cutaneous, etc., is also difficult. To
improve this, many parameters came into play. Two of the
most important things are the penetrating power of exosomes
in different tissues, tight junctions, etc. and their ability to
evade the attack of tissue-resident immune cells and
enzymes.'”’ The low yield of exosomes is a concern, as less
than 1 g of protein is produced per ml of cell culture.">*
Therefore, in order to conduct an experiment or clinical study,
a large number of cells must be cultured. This limitation can be
managed using exosome-mimetic nanovesicles.">> Exosome-
mimetic nanovesicles (EMNV) can be produced by the serial
filtration of extruded cells.">* It is reported that in this way the
yield can be increased up to 100-fold."” Plant-derived
exosomes are some of the most frequent directions for
research in the future. It has been reported that there are some
exosome-related nanoparticles called folic acid-modified
ginger-derived nanovectors that show very hi%h compatibility
and high potency while targeting cancer cells.">® In the case of
FDA-approved nanomedicine research, the primacy of the
exosome is limited. There are several aspects, including
selecting the source of exosomes, standardizing techniques
for culturing cells that produce exosomes, and isolating and
quality controlling produced exosomes so that they can be
applied to health-related problems, with particular reference to
cancer. New technologies and regulations could reduce the
boundaries of these fields."*” Finally, exosome-based research
requires interdisciplinary'*>'*° work ecosystems that can
develop an exosome-based advance therapeutic tool (such as
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a cancer vaccine'”’) for future cancer-associated global health
problems.

10. CONCLUSIONS

Exosomes are burgeoning as next-generation platforms for
nanomedicine in cancer therapy. It is clear that exosomes are
used as promising biomarkers for several potential cancer types
and also as an early detection tool in many clinical studies,
some of which have already been discussed in this Review. The
biocompatibility of exosomes and their highly specific
interactions in living systems have stimulated the development
of futuristic exosome-based therapeutic and drug delivery
approaches. Genetically engineered exosomes loaded with
specific drugs that target specific cancer cells offer more
benefits compared to traditional cancer therapies. Nonetheless,
this innovative approach also has some limitations in terms of
difficulties in its scalability, purity, and isolation methods. This
is the area where deeper research is needed. In the future, more
efforts and more investigations will contribute to the
development of this field, which will definitely open a new
door through which we can be one step ahead of personalized
medicine to treat cancer.
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